Abstract Submitted
for the HAW09 Meeting of
The American Physical Society

Nuclear Structure of 101Pd N.S. BADGER, D.A. MEYER, Rhodes College, A. HEINZ, R.J. CAPERSON, B. HUBER, WNSL, Yale University, J.D. LEBLANC, Rhodes College, R. LUTTKE, WNSL, Yale University; TU Darmstadt, E.A. MCCUTCHAN, Argonne National Lab, J. QIAN, WNSL, Yale University, B. SHORAKA, WNSL, Yale University; University of Surrey, J.K. SMITH, Rhodes College, J.R. TERRY, H. AI, WNSL, Yale University, J.L. HUGON, Rhodes College, E. WILLIAMS, WNSL, Yale University — 101Pd lies in a region of nuclei where $A \approx 110$ and structural changes from vibrational to rotational are significant. In order to examine the nuclear structure of 101Pd, an experiment was performed at the Wright Nuclear Structure Laboratory at Yale University using the ESTU-1 Tandem Van de Graaff Accelerator. A beam of 70 MeV 12C collided with 92Zr target nuclei to produce 101Pd via the 12C + 92Zr → 101Pd + 3n reaction. Emitted γ-rays were detected by the SPEEDY array consisting of eight Compton-suppressed HPGe clover detectors. Then, $\gamma - \gamma$ coincidence measurements were made using RadWare to analyze the data. We were able to confirm many energy levels and observe several new ones. Also, new inter-band connections have been discovered. The structure of 101Pd was then interpreted using the strictly empirical E-GOS (E-Gamma Over Spin) method. The E-GOS plot, created by graphing energies of γ-rays over spin versus spin, revealed a clear transition from vibrational structure to rotational structure.

Nick Badger
Rhodes College

Date submitted: 24 Aug 2009