Abstract Submitted for the HAW09 Meeting of The American Physical Society

Production and Separation of Radioactive Beams ²⁰Na and ²⁰Mg with MARS¹ GOPAL SUBEDI, REU student from Colby College, B.T. ROEDER, A.A. ALHARBI, M. MCCLESKEY, E. SIMMONS, A. SPIRIDON, L. TRACHE, R.E. TRIBBLE, Cyclotron Institute, Texas A&M University — We studied the production and separation of ²⁰Na and ²⁰Mg using the MARS spectrometer at the Cyclotron Institute, TAMU. Using a ²⁰Ne beam at 25 MeV/u on a H₂ gas target at 2 atm and 77 K, a large production of ²⁰Na was observed. Further, we were able to study its β , $\beta\gamma$, and β -delayed α -decay. For the β -delayed α -decay, we observed alphas with energies 2.1, 3.8, 4.4, 4.8 MeV. Following this run, we ran a test experiment to obtain the maximum production of the rarer isotope ²⁰Mg with the same ²⁰Ne beam on a ³He gas target. The gas cell was filled with ³He at 1.5 atm and 77 K. Overall, the fusion-evaporation of ²⁰Ne(³He,3n) was found to be a better reaction for ²⁰Mg production than the fragmentation of ²⁴Mg at 45 MeV/u previously tested with MARS. These findings will be used for planning an upcoming study of the β -delayed proton decay of ²⁰Mg to better understand the resonance states in the $^{19}\text{Ne}(p,\gamma)^{20}\text{Na}$ reaction of crucial astrophysical interest in studies of the hot CNO cycle in stars.

¹Funded by DOE and NSF-REU program

Gopal Subedi Cyclotron Institute, Texas A&M University

Date submitted: 31 Jul 2009 Electronic form version 1.4