Production and Separation of Radioactive Beams 20Na and 20Mg with MARS

GOPAL SUBEDI, REU student from Colby College, B.T. ROEDER, A.A. ALHARBI, M. MCCLESKEY, E. SIMMONS, A. SPIRIDON, L. TRACHE, R.E. TRIBBLE, Cyclotron Institute, Texas A&M University — We studied the production and separation of 20Na and 20Mg using the MARS spectrometer at the Cyclotron Institute, TAMU. Using a 20Ne beam at 25 MeV/u on a H$_2$ gas target at 2 atm and 77 K, a large production of 20Na was observed. Further, we were able to study its β, $\beta\gamma$, and β-delayed α-decay. For the β-delayed α-decay, we observed alphas with energies 2.1, 3.8, 4.4, 4.8 MeV. Following this run, we ran a test experiment to obtain the maximum production of the rarer isotope 20Mg with the same 20Ne beam on a 3He gas target. The gas cell was filled with 3He at 1.5 atm and 77 K. Overall, the fusion-evaporation of 20Ne(3He,3n) was found to be a better reaction for 20Mg production than the fragmentation of 24Mg at 45 MeV/u previously tested with MARS. These findings will be used for planning an upcoming study of the β-delayed proton decay of 20Mg to better understand the resonance states in the 19Ne(p,γ)20Na reaction of crucial astrophysical interest in studies of the hot CNO cycle in stars.

1Funded by DOE and NSF-REU program

Gopal Subedi
Cyclotron Institute, Texas A&M University

Date submitted: 31 Jul 2009