Creation of a Program to Calculate Thermonuclear Reaction Rates for Stellar Explosion Research

KYLE THOMSEN, Tennessee Technological Univ., MICHAEL SMITH\(^1\), ORNL, RAY KOZUB, Tennessee Technological Univ., ERIC LINGERFELT, ORNL — Current models suggest that sequences of hundreds to thousands of thermonuclear reactions form heavier elements in the various stages of stellar life cycles, including their explosive deaths. To provide input for these studies, a program has been written that accommodates many combinations of experimental and theoretical nuclear data to calculate the nonresonant, narrow resonant, and broad resonant contributions to the rates of these reactions. This program will help researchers quickly and easily calculate thermonuclear reaction rates. It will be incorporated into the Computational Infrastructure for Nuclear Astrophysics (CINA) \([1]\), an online system that is used by researchers in 70 institutions in 20 countries for astrophysics research. We have used this new program to calculate a new rate of proton capture on \(^{17}\)F, which influences the amount of \(^{18}\)F synthesized in novae. This new rate is based on the first direct measurement of the strength of the dominant resonance \([2]\). \([1]\) M.S. Smith et al., Proc. Nuclei in the Cosmos IX, 2006. \([2]\) K.A. Chipps et al., Phys. Rev. Lett. 102 (2009) 152502.

\(^1\) ORNL managed by UT-Battelle, LLC, for the US DOE under contract DE-AC05-00OR22725