Identifying the induced depletion of $^{166}_{\text{m}}$Ho1

B.A. DETWILER, N. CALDWELL, G.P. TREES, J.J. CARROLL, Youngstown State University, N. PEREIRA, Ecopulse, Inc., M. LITZ, G. MERKEL, Army Research Lab, J. SCHUMER, Naval Research Lab — Current nuclear data indicates that incoming photons below 300 keV may allow for an induced depletion of the $^{166}_{\text{m}}$Ho isomer. Such photons will excite the nucleus of a sample of $^{166}_{\text{m}}$Ho up to a higher state. From there, the nucleus could decay back to this first metastable state or take a separate decay path down to the ground state. While the first metastable state has a half-life of 1200 years, such an induced depletion would allow the nucleus to decay to its ground state in just fractions of a second. From there, further beta decay occurs on the order of about 24 hours. During the induced depletion cascade, a 136 keV gamma ray will be emitted from a level that has a 185 μs half-life and is above the initial isomer. A detection system has been designed to detect this unique photon as well as evidence of the 185 μs half-life; both are signals that the induced depletion has occurred. A cerium-doped lanthanum chloride (LaCl₃:Ce) scintillator coupled to a gated photomultiplier tube is used to observe gamma rays from the isomeric sample of $^{166}_{\text{m}}$Ho. Timing data of the unique photon will be recorded in between bremsstrahlung pulses from an electron linac. First results of this experiment will be discussed.

1Supported by DTRA

J.J. Carroll
Youngstown State University

Date submitted: 31 Jul 2009