Data analysis for spectroscopy of 108Ag via single-neutron transfer1 T. DETWILER, B. DETWILER, G.P. TREES, I.N. MILLS, T. HARLE, N. CALDWELL, Youngstown State University, S.A. KARAMIAN, Joint Institute for Nuclear Research, T. SHIZUMA, JAEA Kansai Photon Science Institute, T. ISHII, H. MAKII, JAEA Advanced Science Research Center, E. IDEGUCHI, University of Tokyo, P.M. WALKER, University of Surrey, R.S. CKAKRAWARTHY, J.J. CARROLL, Youngstown State University — 108Ag contains an isomeric state with excitation energy of 110 keV and a half-life of 418 years. A level above this state with excitation energy of 364 keV provides decay paths to both the isomeric and ground states; therefore, this level might serve to enable an induced depletion of the isomer. To obtain improved level data, an experiment was conducted at the tandem accelerator facility, JAEA, Tokai where a beam of 18O ions were incident on a 107Ag target. Arrays of Si ΔE-E detectors and HPGe detectors were arranged to detect projectile-like ions and gamma rays, respectively. Among numerous reactions, single-neutron transfer produced excited states in 108Ag with scattered projectile-like 17O ions. This poster will discuss data sorting to extract these events and preliminary analysis of the corresponding gamma-gamma coincidence matrix.

1Supported by DTRA.