Abstract Submitted for the HAW09 Meeting of The American Physical Society

Search for the alpha-cluster $\mathbf{2}_2^+$ state in $^{12}\mathbf{C}^1$ NAOKI YOKOTA, Faculty of Science, Kyoto University — Alpha particle clustering is an important concept in nuclear physics. Many works were devoted to examine the alpha-cluster structure in atomic nuclei. The ¹²C nucleus is one of the well-investigated nuclei, and its energy level is successfully explained by the alpha-cluster-model (ACM) calculations except for the 2_2^+ state. The ACM calculation strongly suggests the 2^+ state should be observed at $E_x \sim 10$ MeV. Recently, Itoh et al suggested both the 0^+ and 2^+ states exist in a broad bump at $E_x \sim 10$ MeV in $^{12}{\rm C}$, but Fynbo et al claimed they observed no 2^+ states in the bump. Thus the existence of the 2^+_2 state is still controversial. We propose to measure the cross sections for the ¹⁶O(d, ⁶Li) reaction at $E_d = 45$ MeV to search for the 2^+_2 state in 12 C. We will perform the multipole-decomposition analysis on the basis of the DWBA calculation and pin down the 2^+ strengths in the broad bump at $E_x \sim 10$ MeV. We will use a ΔE -E Si counter to detect reaction products. This counter consists of two Si strip detectors with the thicknesses of 65 μ m and 500 μ m. We performed a test experiment and confirmed the performance of the ΔE -E Si counter is good enough to carry out the proposed measurement.

¹This research is supported by the special study course P3 under Kyoto University.

Naoki Yokota Faculty of Science, Kyoto University

Date submitted: 12 Aug 2009 Electronic form version 1.4