HAW14-2014-000022

Abstract for an Invited Paper for the HAW14 Meeting of the American Physical Society

Baryon resonance physics and its application to neutrino interactions SATOSHI NAKAMURA, Osaka University

Recent breakthrough measurements of non-zero neutrino mixing angle θ_{13} indicated a possibility of the CP violation in the lepton sector. Now the main concern of the neutrino physics is the leptonic CP violation and mass hierarchy. For making a progress towards this direction by analyzing data from the next-generation long-baseline and atmospheric experiments, neutrino-nucleon and neutrino-nucleus scattering in a wide kinematical region need to be understood much better than what are available at present. Our effort of developing a dynamical coupled-channels (DCC) model for neutrino-nucleon interaction is for challenging this demanding problem. The DCC model is designed to work in the resonance region where single- and double-pion productions are dominant processes. The DCC model is based on meson-exchange non-resonant mechanisms, and excitations of nucleon resonances. The DCC model includes channels relevant to the resonance region of $W \leq 2$ GeV (W: total hadronic energy); they are $\pi N, \pi \pi N, \pi \Delta, \rho N, \sigma N, \eta N, K\Sigma$ and $K\Lambda$. By solving a scattering equation, we obtain unitary amplitudes for meson productions. The DCC model has been developed for the purpose of extracting baryon resonance properties. We have successfully done a DCC-based analysis of world data of $\pi N, \gamma N \to \pi N, \eta N, K\Sigma$ and $K\Lambda$, and extracted properties of the baryon resonances [1]. The DCC model has thus been well tested by a large amount of data. We extend the DCC model to describe the neutrino processes. Non-resonant axial currents are derived from a chiral Lagrangian, while resonant axial currents are fixed by the PCAC relation to the pion couplings. We present results of our calculations for the neutrino-induced meson production cross sections. We discuss roles played by various mechanisms such as Δ -, higher resonance-excitations, and non-resonant mechanisms.

[1] H. Kamano, S.X. Nakamura, T. -S. H. Lee, and T. Sato, Phys. Rev. C 88, 035209 (2013).