HAW14-2014-000130

Abstract for an Invited Paper for the HAW14 Meeting of the American Physical Society

3D structure of nucleon with virtuality distributions¹ ANATOLY RADYUSHKIN, Old Dominion University/Jefferson Lab

We describe a new approach to transverse momentum dependence in hard processes. Our starting point is coordinate representation for matrix elements of operators (in the simplest case, bilocal $\mathcal{O}(0, z)$) describing a hadron with momentum p. Treated as functions of (pz) and z^2 , they are parametrized through parton virtuality distribution (PVD) $\Phi(x, \sigma)$, with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z^2 . For intervals with $z^+ = 0$, we introduce the transverse momentum distribution (TMD) $f(x, k_{\perp})$, and write it in terms of PVD $\Phi(x, \sigma)$. The results of covariant calculations, written in terms of $\Phi(x, \sigma)$ are converted into expressions involving $f(x, k_{\perp})$. We propose models for soft PVDs/TMDs, and describe how one can generate high- k_{\perp} tails of TMDs from primordial soft distributions.

 $^1 \rm Supported$ by Jefferson Science Associates, LLC under U.S. DOE Contract #DE-AC05-06OR23177 and by U.S. DOE Grant #DE-FG02-97ER41028