Development of TOF detector with ultra-thin Formvar films for astrophysics experiment

KENICHI HAMAMOTO, Department of Physics, Kyushu University, K.SAGARA COLLABORATION, K.FUJITA COLLABORATION, H.YAMAGCHI COLLABORATION, N.TAO COLLABORATION, Y.NARIKIYO COLLABORATION — At Kyushu university tandem laboratory, we are measuring $^4\text{He} (^{12}\text{C}, ^{16}\text{O})$ gamma reaction cross section for the energy range of $E_{\text{cm}} = 2.4$ to 0.7 MeV by detecting ^{16}O recoils. The produced ^{16}O ions are transported to a recoil mass separator where they are separated from the unreacted ^{12}C beam and they are detected by a particle detector placed at focal plane. Since the energy of the produced ^{16}O ions were very low, the detector should have as small a thickness as possible. It is also of importance to have large effective area to collect all ^{16}O ions. To satisfy these requirements, a TOF detector employing micro-channel plates was developed. Special attention was paid to develop an ultra-thin and large area formvar film, which acts as an electron emitter and a cathode electrode. The thickness was estimated to be $4 \mu\text{g/cm}^2$ by measuring the energy loss of ^{16}O beam, and the effective area was 80mm in diameter. In this symposium, we will report the method and the result of performance test of the developed TOF detector.

Kenichi Hamamoto
Department of Physics, Kyushu University

Date submitted: 25 Jun 2014