Abstract Submitted for the HAW14 Meeting of The American Physical Society

Development of TOF detector with ultra-thin Formvar films for astrophysics experiment KENICHI HAMAMOTO, Department of Physics, Kyushu University, K.SAGARA COLLABORATION, K.FUJITA COLLAB-ORATION, H.YAMAGCHI COLLABORATION, N.TAO COLLABORATION, Y.NARIKIYO COLLABORATION — At Kyushu university tandem laboratory, we are measuring ⁴He (^{12}C , ^{16}O) gamma reaction cross section for the energy range of $E_{cm} = 2.4$ to 0.7 MeV by detecting ¹⁶O recoils. The produced ¹⁶O ions are transported to a recoil mass separator where they are separated from the unreacted ^{12}C beam and they are detected by a particle detector placed at focal plane. Since the energy of the produced ¹⁶O ions were very low, the detector should have as small a thickness as possible. It is also of importance to have large effective area to collect all ¹⁶O ions. To satisfy these requirements, a TOF detector employing micro-channel plates was developed. Special attention was paid to develop an ultra-thin and large area formvar film, which acts as an electron emitter and a cathode electrode. The thickness was estimated to be 4 $\mu g/cm^2$ by measuring the energy loss of ¹⁶O beam, and the effective area was 80mm in diameter. In this symposium, we will report the method and the result of performance test of the developed TOF detector.

> Kenichi Hamamoto Department of Physics, Kyushu University

Date submitted: 25 Jun 2014

Electronic form version 1.4