Abstract Submitted for the HAW14 Meeting of The American Physical Society

Feasibility study to search for the rare γ -decay mode in 12 C MIHO TSUMURA, TAKAHIRO KAWABATA, SATOSHI ADACHI, TATSUO BABA, TATSUYA FURUNO, YUKI ISHII, MOTOKI MURATA, Kyoto University, ATSUSHI TAMII, TAKASHI HASHIMOTO, KICHIJI HATANAKA, YOHEI MATSUDA, KENJIRO MIKI, CHIHIRO IWAMOTO, TAKESHI ITO, MASAKI MIURA, Research Center for Nuclear Physics, Osaka University, JUZO ZENIHIRO, SHIGERU KUBONO, RIKEN, MASATOSHI ITOH, SHUN ANDO, Cyclotron and Radioisotope Center, Tohoku University, YUKIE MAEDA, Miyazaki University, SATOSHI SAKAGUCHI, Kyushu University, HIDETOSHI AKIMUNE, Konan University, HISAKO FUJIMURA, Wakayama University, IWA OU, Okayama University, RCNP E404 COLLABORATION — The triple α reaction plays a very important role in the ¹²C synthesis in the universe. Gamma-decay widths of excited states in $^{12}\mathrm{C}$ are the key parameters to determine the triple α reaction rate. The triple α process proceeds via the 0_2^+ state (Hoyle state) at normal stellar temperature. However, at high temperature $T_9 > 1$, the highly excited states such as the 3_1^- and 2_2^+ states become dominant. Unfortunately, the γ -decay widths of these states are still unknown. We proposed to measure the ¹H(¹²C, ¹²Cp) reaction to determine the radiative widths of the highly excited states in ¹²C. Recoil protons will be measured in coincidence with scattered 12 C instead of γ -rays. The test experiment was carried out at the cyclotron facility in RCNP. In the present talk, we will report this result.

> Miho Tsumura Kyoto University

Date submitted: 26 Jun 2014 Electronic form version 1.4