Nonlocal Potentials in Nuclear Reactions LUKE TITUS, FILOMENA NUNES, Michigan State University — In this work we investigate the effect of nonlocality for single-channel bound and scattering states, as well as in transfer (p,d) cross sections. We solve the scattering and bound state equations for nonlocal interactions of the Perey-Buck type [1]. Using the distorted wave Born approximation, we construct the T matrix for (p,d) on 17O, 41Ca, 49Ca, 127Sn, 133Sn, and 209Pb at 20 and 50 MeV. If local optical potentials are used in the analysis of experimental (p,d) cross sections, as compared to the analysis with nonlocal potentials, the spectroscopic factors can be affected by approximately 20%. The Perey correction factor does offer an improvement over taking a direct local equivalent solution. However, if the desired accuracy is to be better than 10%, the exact solution of the nonlocal equation should be pursued.