Abstract Submitted for the HAW14 Meeting of The American Physical Society

 $\alpha + {}^{15}$ O cluster structures in 19 Ne and the α resonant scattering REIJI OTANI, MASATAKA IWASAKI, MASASHI TOMITA, MAKOTO ITO, Department of pure and applied physics, Kansai university — Cluster structures are well known to appear in the excited states of light nuclear systems. A typical example is the $\alpha + {}^{16}$ O cluster structures in 20 Ne, and the $\alpha + {}^{15}$ N structures are also deeply analyzed in ¹⁹F, which is one proton deficient system of ²⁰Ne. However, the $\alpha + {}^{15}O$ structure, corresponding to the neutron deficient system of ${}^{20}Ne$, still remains unclear. In the present study, we investigate the $\alpha + {}^{15}O$ structure in ${}^{19}Ne$ by employing a simple potential model. We assume the Wood-Saxon potential for the nuclear potential of $\alpha + {}^{15}$ O, and its parameter set is fixed by solving the $\alpha + {}^{15}$ N elastic scattering. From the nuclear potential determined from the $\alpha + {}^{15}N$ scattering problem, we calculate the energy levels in the ¹⁹Ne = α +¹⁵O system by adding the Coulomb interaction to the $\alpha + {}^{15}N$ system. The absorbing boundary condition is imposed on the unbound states in $\alpha + {}^{15}O$, and the resonant levels in ${}^{19}Ne$ are identified. We have also calculated the excitation function of the resonant $\alpha + {}^{15}O$ elastic scattering under the same condition as the recent experiments. In the present report, we will show our prediction of the $\alpha + {}^{15}O$ rotational bands and the cross sections in the resonant α scattering. Moreover, we will also report the application of the microscopic cluster model to the ¹⁹Ne = α +¹⁵O system.

> Reiji Otani Department of pure and applied physics, Kansai university

Date submitted: 30 Jun 2014

Electronic form version 1.4