HAW14-2014-000512

Abstract for an Invited Paper for the HAW14 Meeting of the American Physical Society

The $({}^{6}\text{Li}, {}^{6}\text{Li'}[3.56 \text{ MeV}])$ reaction as a novel probe for studying the inelastic neutrino-nucleus response in astrophysical scenarios

SHUMPEI NOJI, National Superconducting Cyclotron Laboratory, Michigan State University

We have proposed to perform a (⁶Li, ⁶Li'[3.56 MeV]) experiment at $E_{^{6}\text{Li}} = 100 \text{ MeV/u}$ at 0° with CAGRA and GRAND RAIDEN. In this reaction the ejectile is in the 3.56-MeV excited state which decays directly to the ground state by γ emission, allowing the reaction channel to be identified via the detection of the 3.56-MeV γ rays with CAGRA. This reaction exclusively excites GT₀ transitions, namely the pure spin- and isospin-flip transitions in the inelastic channel ($\Delta S = 1, \Delta T = 1, \Delta T_z = 0$), whose transition strength [$B(\text{GT}_0)$] is directly connected to, e.g., the inelastic neutrino-nucleus scattering (INNS) cross sections. We plan to measure five targets, ¹²C, ²⁴Mg, ⁵⁶Fe, ⁹³Nb, and ¹²⁴Sn, with the aim to establish this new technique as well as address various astrophysical topics including nucleosynthesis (r- and ν -processes), supernova neutrino detection, supernova evolution and modeling. In addition, many astrophysical models rely on neutral-current and charged-current neutrino interactions with heavy nuclei for which very little data exists, therefore this experiment and the ⁶Li reaction probe are of high scientific importance. The success of this project could lead to future plans that employ the (⁶Li, ⁶Li') reaction in inverse kinematics to study GT₀ responses of rare isotopes.