Determining the Energy Gap Between the sd-pf Neutron Shells in 25O

MICHAEL JONES, MSU/NSCL, NATHAN FRANK, Augustana College, PAUL DEYOUNG, Hope College, THOMAS BAUMANN, ZACH KOHLEY, JENNA SMITH, ARTEMIS SPYROU, KRYSITN STIEFEL, ANTHONY KUCHERA, MICHAEL THOENNESSEN, MSU/NSCL, MONA COLLABORATION — The excited states of 25O, particularly those of negative parity, are of great interest for determining the evolution of the sd-pf shell gap in and around the “island of inversion.” Shell Model (WBBS) calculations tuned to nearby 27Ne predict the $3/2^-$ state in 25O to be only 500 keV above the ground state, implying the sd-pf shell gap to be small. Hence it is likely for nuclei beyond N=16 to have mixing between the 0d$^{3/2}$ and 1p$^{3/2}$ orbitals. A recent experiment, performed at the NSCL, populated 25O through use of a (d,p) reaction. Using the Ursinus College Liquid Hydrogen Target, an 24O beam impinged on a deuterium target cell with a thickness of 400 mg/cm2 at a rate of approximately 30 pps to produce 25O, which decayed immediately by neutron emission. The resulting charged fragments were bent by the Sweeper magnet into a suite of charged particle detectors, while the neutrons traveled unimpeded towards MoNA (Modular Neutron Array) and LISA (Large multi-Institutional Scintillator Array). Together, MoNA-LISA and the Sweeper provide a full kinematic measurement from which the decay energy of the 2-body system can be determined. Preliminary results will be discussed.

Michael Jones
MSU/NSCL

Date submitted: 30 Jun 2014

Electronic form version 1.4