Abstract Submitted for the HAW14 Meeting of The American Physical Society

Status update on the measurement of the β - ν angular correlation with trapped ⁸B ions¹ ADRIAN PEREZ GALVAN, Argonne National Laboratory, BPT COLLABORATION — Measurements of the β - ν angular correlation coefficient $(a_{\beta\nu})$ in β -decay provide information on the presence of possible exotic interactions beyond the Standard Model. The ⁸Li-⁸B radioactive mirror nuclei represent a particularly attractive system for these studies due to their small masses, large Q-value, and a triple-correlation that enhance the sensitivity to detect so-called "New Physics." Furthermore, it is possible to search for the existence of second-classcurrents in the Standard Model and to test the Conserved-Vector-Current hypothesis by comparing correlation measurements in ⁸Li and ⁸B. Our collaboration has already performed a measurement of $a_{\beta\nu}$ with trapped ⁸Li ions using the Beta-Decay Paul Trap at Argonne National Laboratory with an uncertainty of approximately 1 percent. Tests with a small sample of ⁸B decays obtained during a preliminary run showed that a measurement of comparable sensitivity is feasible. In this talk we present the current status on the ongoing effort to achieve a high statistics measurement using trapped ⁸B ions.

¹This work was supported under Contracts DE-AC52-07NA27344 (LLNL), DEAC02-06CH11357 (ANL), DE-FG02-98ER41086 (Northwestern U.), and NSERC, Canada, under Application No. 216974.

Adrian Perez Galvan Argonne National Laboratory

Date submitted: 30 Jun 2014 Electronic form version 1.4