Abstract Submitted for the HAW14 Meeting of The American Physical Society

Nuclear structure studies of 195Au and 196Au¹ ARMEN GYURJINYAN, ANTHONY BATTAGLIA, CLARK CASARELLA, ANDREW NYSTROM, KEVIN SIEGL, KARL SMITH, MALLORY SMITH, SABRINA STRAUSS, WANPENG TAN, ANI APRAHAMIAN, University of Notre Dame — The Interacting Boson Model (IBM) theory is widely used to describe nuclear structure of heavy even-even nuclei. The model was extended to odd-A and odd-odd nuclei structure studies with supersummetric transformations. The best quartet of nuclei to test the supersymmetry transformations is ¹⁹⁴Pt, ¹⁹⁵Pt, ¹⁹⁵Au and ¹⁹⁶Au. The IBM describe the well-known spectra of ¹⁹⁴Pt, and then the supersymmetric transformations can predict low-lying levels with negative parity in ¹⁹⁵Pt, ¹⁹⁵Au, 196 Au. We used 195 Pt(p,n), 196 Pt(p,n) and 196 Pt(p,2n) reactions to produce 195 Au and ¹⁹⁶Au at the University of Notre Dame Nuclear Science Laboratory. The beam was 7.75MeV and 12 MeV bunched proton beam respectively. The conversion electron spectroscopy was carried out using the ICEBall array mini-orange detectors and two high purity germanium detectors with 109% efficiency for gamma spectroscopy. The results of experiment will be presented.

¹This work was supported by the National Science Foundation under contract number NSF PHY-1068192.

Armen Gyurjinyan University of Notre Dame

Date submitted: 30 Jun 2014 Electronic form version 1.4