HAW14-2014-000671

Abstract for an Invited Paper for the HAW14 Meeting of the American Physical Society

Flow Measurements at the RHIC and LHC, What Have We Learned? What is Needed? TAKAHITO TODOROKI, University of Tsukuba

Higher-order flow coefficients, v_n , reflect the space-time evolution process of hot and dense medium formed in relativistic heavy ion collisions. In the low p_T region, experimental v_n data at the highest energy A+A collisions at the RHIC and LHC is successfully described by various hydrodynamic calculations that employ Glauber/CGC initial conditions for heavy ion collisions and a shear viscosity of the medium. Our goal is to determine a single combination of an initial state and a viscosity value which can describe the data. However, there are currently more than one such combination and further constraints from experiments and theories are of importance. Azimuthal anisotropy v_n is also observed in small collisions systems such as p(d)+A collisions at RHIC and LHC. The CGC (initial state effect) and hydrodynamic expansion (final state effect) are suggested as a possible explanations. Understanding the primary causes of v_n evolution is important for the understanding of small collision systems and might provide useful information to the understanding of the initial condition in A+A collisions. In this talk, we will (i) summarize what we have observed in p(d)-A and A+A collisions at the RHIC and LHC, and (ii) discuss what has to be done as next step towards more precise understanding of the properties of the medium.