Abstract Submitted for the HAW14 Meeting of The American Physical Society

Reaction cross section of ²²**C** YASUHIRO TOGANO, Department of Physics, Tokyo Institute of Technology, SAMURAI COLLABORATION — Reaction cross section of ²²C on a carbon target at an energy of 240 MeV/nucleon have been measured by using the transmission method. The most neutron-rich carbon isotopes ²²C is a candidate of a two-neutron halo nucleus. Tanaka *et al.* [1] measured the reaction cross section of ²²C on a hydrogen target at 40 MeV/nucleon. It is showed ²²C to have a large matter radius of 5.9 ± 0.9 fm, which is much larger than the ones of carbon isotopes with $N \leq 14$, suggesting ²²C is the halo nucleus. This reported radius has a large uncertainty due to a lack of statistics. To deduce a more accurate matter radius of ²²C, the measurement of reaction cross section with higher statistics at a higher beam energy are required. The experiment was performed by using the SAMURAI spectrometer at RIBF. The ²²C beam at 240 MeV/nucleon was impinged on a carbon target, and the reaction product was identified by using SAMURAI spectrometer. In the present talk, the extracted reaction cross section and derived matter density distribution of ²²C will be presented.

> Yasuhiro Togano Department of Physics, Tokyo Institute of Technology

Date submitted: 01 Jul 2014

Electronic form version 1.4