Reaction cross section of 22C

YASUHIRO TOGANO, Department of Physics, Tokyo Institute of Technology, SAMURAI COLLABORATION — Reaction cross section of 22C on a carbon target at an energy of 240 MeV/nucleon have been measured by using the transmission method. The most neutron-rich carbon isotopes 22C is a candidate of a two-neutron halo nucleus. Tanaka et al. [1] measured the reaction cross section of 22C on a hydrogen target at 40 MeV/nucleon. It is showed 22C to have a large matter radius of 5.9 ± 0.9 fm, which is much larger than the ones of carbon isotopes with $N \leq 14$, suggesting 22C is the halo nucleus. This reported radius has a large uncertainty due to a lack of statistics. To deduce a more accurate matter radius of 22C, the measurement of reaction cross section with higher statistics at a higher beam energy are required. The experiment was performed by using the SAMURAI spectrometer at RIBF. The 22C beam at 240 MeV/nucleon was impinged on a carbon target, and the reaction product was identified by using SAMURAI spectrometer. In the present talk, the extracted reaction cross section and derived matter density distribution of 22C will be presented.

Yasuhiro Togano
Department of Physics, Tokyo Institute of Technology

Date submitted: 01 Jul 2014