Invariant mass spectroscopy of 17C via one-neutron knockout reaction from 18C SUNJI KIM, Seoul National University, SAMURAI COLLABORATION — The nuclei away from the β-stability line are expected to have exotic nuclear structures. For example, the ground states of neutron-rich carbon isotopes, 15C, 17C, and 19C, have been predicted to be $5/2^+$ states in the naive shell model. However, they were identified as $1/2^+$, $3/2^+$, and $1/2^+$, respectively, due to the halo structure and/or nuclear deformation. To understand the properties of the valence orbit relative to the inner orbit in those neutron-rich carbon isotopes, the study of the negative parity states is decisive. The present study focuses on the low-lying negative parity states in 17C above the neutron decay threshold. The experiment was performed for the C(18C,17C*) one-neutron knockout reaction channel at 250 MeV/nucleon using the SAMURAI spectrometer at RIKEN-RIBF, during the first physics runs of the apparatus. The nucleon knockout reaction utilizing the secondary beams in inverse kinematics has become recognized as a sensitive tool for spectroscopy of the nuclei far from the β-stability line. In the presentation, details of the measurement and analysis will be reported together with new results on the low-lying negative parity states in 17C.

Sunji Kim
Seoul National University

Date submitted: 01 Jul 2014

Electronic form version 1.4