Abstract Submitted for the HAW14 Meeting of The American Physical Society

Development of enriched ¹³⁰TeO₂ crystals for neutrinoless double beta decay searches¹ BARBARA S. WANG, University of California at Berkeley, CUORE COLLABORATION — The Cryogenic Underground Observatory for Rare Events (CUORE) will search for the neutrinoless double-beta decay of ¹³⁰Te using an array of 988 bolometers comprised of natural-isotopic-composition TeO₂. We are now investigating the feasibility of producing ¹³⁰Te-enriched crystals for a possible future improved search of this kind. Together with the Shanghai Institute of Ceramics, we have developed a tentative crystal-production plan. Ten kilograms of 92%-enriched ¹³⁰Te metal are currently available for this project. In order to test possible effects on the crystal growth process, 500 grams of this material have been converted into TeO₂ and then blended with natural TeO₂ to produce three 5x5x5-cm³ TeO₂ crystals with a 40% ¹³⁰Te abundance. These crystals have been tested as bolometers at the Gran Sasso National Laboratory. Preliminary results from this effort will be presented along with plans for further development of enriched crystals for neutrinoless double-beta decay searches.

¹This work was supported in part by the U. S. Dept. of Energy under contract numbers DE-AC02-05CH11231, DE-AC52-07NA27344, and DE-NA0000979.

Eric Norman University of California at Berkeley

Date submitted: 01 Jul 2014 Electronic form version 1.4