Abstract Submitted for the HAW14 Meeting of The American Physical Society

Studies of the 198 Hg(d,d') and 198 Hg(d,p) reactions A. DIAZ VARELA, P.E. GARRETT, V. BILDSTEIN, A.T. LAFFOLEY, A.D. MACLEAN, E.T. RAND, C.E. SVENSSON, University of Guelph, G.C. BALL, TRIUMF, T. FAESTERMANN, Technische Universität München, R. HERTENBERGER, H.-F. WIRTH, Ludwig-Maximilians-Universität München — Limits on the electric dipole moment (EDM) continue to decrease for ¹⁹⁹Hg, the most stringent upper limit for a nuclear EDM to date. The experimental limit on the observed atomic EDM for ¹⁹⁹Hg is converted to limits on fundamental CP-odd interactions via a calculation of the nuclear Schiff moment, requiring knowledge of the nuclear structure of ¹⁹⁹Hg. The E3 and E1 strength distributions to the ground state of 199 Hg, and E2 transitions amongst excited states, would be ideal information to further constrain ¹⁹⁹Hg Schiff moment theoretical models. The high level density of ¹⁹⁹Hg makes those determinations challenging, however similar information can be obtained from exploring surrounding even-even Hg isotopes. As part of a campaign to study the Hg isotopes near ¹⁹⁹Hg, two reactions, ${}^{198}Hg(d,d'){}^{198}Hg$ and ${}^{198}Hg(d,p){}^{199}Hg$ were studied using the Q3D spectrograph at the Maier-Leibnitz Laboratory (MLL) at Garching, Germany. A 22 MeV deuterium beam was used to impinge a ¹⁹⁸Hg³²S target. The (d,d') reaction allows us to probe the desired E2 and E3 matrix elements, while the (d,p) reaction provides information on the neutron single-particle states of ¹⁹⁹Hg.

> Alejandra Diaz Varela University of Guelph

Date submitted: 01 Jul 2014

Electronic form version 1.4