Abstract Submitted for the HAW14 Meeting of The American Physical Society

Missing mass spectroscopy of ⁴H via exothermic charge exchange reaction (⁸He, ⁸Li γ) HIROYUKI MIYA, CNS, University of Tokyo — Charge exchange reactions are powerful tools in the study of spin-isospin responses in nuclei. The RI beam induced reactions have the variety of spin-isospin and the high *Q*-Value with internal energy. We aimed to study the nuclear structure of unbound nuetron rich 4H. This work is the first measurement of (⁸He(0⁺), ⁸Li(1⁺)) reaction at the energy of 190 MeV/u. This reaction has the feature of the large mass difference of 11 MeV and tagging $\Delta S = \Delta T = 1$ transition mode by detecting de-excited γ -rays (980 keV) form first 1⁺ state in ⁸Li. The experiment was performed with the SHARAQ spectrometer combined with the γ -ray detector array DALI2 in RIBF. The ⁸He beam produced via thr projectile fragmentation of ¹⁸O was irradiated liquid ⁴He target at the intensity of about 2 MHz. Excitation energy was obtained by measuring the momenta of the ⁸He and ⁸Li beams in the beamline and the SHARAQ by using missing-mass method. In this presentation, the result of the present experiment will be reported.

> Hiroyuki Miya CNS, University of Tokyo

Date submitted: 01 Jul 2014

Electronic form version 1.4