Coupled-Channel Computation of Direct Neutron Capture on Non-Spherical Nuclei

GORAN ARBANAS, ORNL, IAN THOMPSON, JUTTA ESCHER, LLNL, FILOMENA NUNES, MSU, CHARLOTTE ELSTER, OU, SHISHENG ZHANG, ORNL, TORUS COLLABORATION

Models of direct neutron capture of neutrons have so far accounted for the effects of non-spherical nuclei either in the incoming wave functions (via non-spherical optical model potentials), or in the final bound states (via non-spherical real potential wells), but not in both. Since it is known that spherical optical potentials do not give a good reproduction of low energy neutron-scattering observables of deformed nuclei, we have performed calculations in which the initial and final states are both treated in a self-consistent, non-spherical-nucleus picture. We have done this in the coupled-channels model of nuclear reactions implemented in the FRESCO code [1] by using the same deformation-length for the couplings to the rotational-band states in the incoming and the final state configurations. We compute direct capture using this method for even-mass calcium isotopes \(^{40,42,44,46,48}\text{Ca}\) to study the effect across the two closed neutron shells, for neutron-rich even-mass tin isotopes relevant to models of astrophysical nucleosynthesis, and for \(^{56}\text{Fe}\) that is an important structural material used in nuclear applications.

This work was performed under the auspices of the U.S. D.O.E. by UT-Battelle, LLC, Contract No. DE-AC0500OR22725, and by Lawrence Livermore National Laboratory, Contract DE-AC52-07NA27344.

Theory of Reactions for Unstable iSotopes

Date submitted: 01 Jul 2014

Electronic form version 1.4