Study of the T=5/2 states in 9Li (analogs of the lowest states in 9He) as a test of nuclear structure theory for drip line nuclei

VLADILEN GOLDBERG, G.V. ROGACHEV, Cyclotron Institute Texas A&M University, M. ALCORTA, B. DAVIDS, TRIUMF, Canada, J. HOOKER, H. JAYATISSA, E. KOSHCHIY, A. NELSON, B. ROEDER, E. UBERSEDER, R.E. TRIBBLE, Cyclotron Institute Texas A&M University — About 20 years ago, a group of Hahn- Meitner Institute made precision measurements of a multi nucleon transfer reaction to populate the lowest states in 9He. They found [1,2] a state of 9He(1/2−) at 1.27 ± 0.10 MeV above the 8He + n threshold with $\Gamma = 0.10 \pm 0.06$ MeV. Since then, many groups tried to obtain detailed information on 9He mainly using rare isotope beams. However, the energy resolution and counting statistics was never sufficient to test the data [1,2] (see a review in [3]). Additionally an MSU group [4] found a virtual s-wave state within 0.2 MeV of the 8He+n threshold which they claimed to be the ground state of 9He. The theoretical calculations demonstrate rare unanimity. A variety of approaches including the recent [5] ab initio calculations predict a broad state, approximately ten times broader than given in Refs. [1,2]. So it can be that our understanding of nuclear structure at the border of nuclear stability is seriously deficient. To date, it looks like all straightforward ways to obtain spectroscopic information on 9He were tested. So, we populated T=5/2 states in 9Li (analogs of 9He) in 8He+p resonance elastic scattering using the TTIK method [5,6]. The measurements were performed using 4 MeV/A 8He beam provided by TRIUMF facilities. The scattering chamber was filled with CH$_4$ gas. The proton recoils were detected by an array of position sensitive proportional counters and silicon detectors. The experimental equipment was tested using 3.5 and 7 MeV/A 12C beams of Cyclotron Institute at TAMU.

Grigory Rogachev
Cyclotron Institute Texas A&M University

Date submitted: 01 Jul 2014