Maximum J Pairing and Asymptotic Behavior of the 3j and 9j Coefficients

DANIEL HERTZ-KINTISH, LARRY ZAMICK, BRIAN KLESZYK, Rutgers University — We investigate the large \(j \) behavior of certain 3\(j \) and 9\(j \) symbols, where \(j \) is the total angular momentum of one particle in a given shell. Our motivation is the problem of maximum \(J \) pairing in nuclei, along with the more familiar \(J = 0 \) pairing. Maximum \(J \) pairing leads to an increase in \(J = 2 \) coupling of two protons and two neutrons relative to \(J = 0 \). We find that a coupling unitary 9\(j \) symbol \((U9j) \) is very weak as \(j \) increases, leading to wavefunctions which are to an excellent approximation single \(U9j \) coefficients. Our study of the large \(j \) behavior of coupling unitary 9\(j \) symbols is through the consideration of the case when the total angular momentum \(I \) is equal to \(I_{\text{max}} - 2n \) and \(n = 0, 1, 2, \ldots \). We here derive asymptotic approximations of coupling 3\(j \) symbols and find that the 3\(j \) \(\propto j^{-3/4} \) in the high \(j \) limit. One major analytical tool we used is the Stirling Approximation. Through analytical, numerical, and graphical methods, we show the power law behavior of the coupling unitary 9\(j \) symbols in the \(n/j \ll 1 \) limit, i.e. \(U9j \propto j^{-n} \). Power-law behavior is evident if there is a linear dependence of \(\ln |U9j| \) vs. \(\ln j \). We also present some examples of percent errors in our approximations.

1Daniel Hertz-Kintish and Brian Kleszyk thank the Aresty Center for Undergraduate Research for support during the 2014 summer session and the 2013-2014 academic year, respectively.