Abstract Submitted for the HAW14 Meeting of The American Physical Society

Setting Limits on Double β Decay of 136 Xe to the Excited State of 136 Ba using EXO-200 JEREMY GAISON, Drexel University, EXO-200 COLLABORATION — When a single β decay is energetically forbidden, it is possible for certain even-even nuclei to undergo the very rare process of two neutrino double β decay $(2\nu\beta\beta)$. Further, the $2\nu\beta\beta$ decay to the excited state of a daughter nucleus has been directly observed for 150 Nd and 100 Mo with half lives on the order of 10^{20} years, several orders of magnitude longer than the age of the universe. A better understanding of this type of decay could put constraints on current models for nuclear matrix elements. Using data from EXO-200, a 110-kg liquid xenon time projection chamber designed to search for the neutrinoless double β decay $(0\nu\beta\beta)$ of 136 Xe, we search for the $2\nu\beta\beta$ decay of 136 Xe to the first 0^+ excited state of 136 Ba, a process expected to have a half life on the order of 10^{25} years.

Jeremy Gaison Drexel University

Date submitted: 23 Jul 2014 Electronic form version 1.4