Abstract Submitted for the HAW14 Meeting of The American Physical Society

Precise Measurements of the Internal Conversion Coefficient of ^{111m}Cd Isomer¹ LAURA PINEDA, NINEL NICA, JOHN HARDY, Cyclotron Institute, Texas A&M — The theoretical Internal Conversion Coefficient, $\alpha_{\rm K}$, for the 150 keV E3 transition in ^{111m}Cd depends on the treatment of the atomic vacancy. If the atomic vacancy is taken into consideration, the $\alpha_{\rm K}$ value equals to 1.450, while the $\alpha_{\rm K}$ value is 1.425 when the vacancy is neglected. In an 1987 publication, the $\alpha_{\rm K}$ was determined to be 1.29 ± 0.11 , which agrees with neither value. To investigate this discrepancy, we conducted an experiment to remeasure the $\alpha_{\rm K}$ of ^{111m}Cd. By using a 99% enriched ¹¹⁰Cd sample and activating it with thermal neutrons, we produced the desired ^{111m}Cd isomer. With a very well calibrated High Purity Germanium detector, the gamma-rays as well as the X-rays corresponding to the 150 keV transition were observed, and their relative intensities measured. Our preliminary $\alpha_{\rm K}$ value results is 1.458 ± 15, which agrees with the theoretical $\alpha_{\rm K}$ value that includes the atomic vacancy, and disagrees with the no-vacancy calculation.

¹Funded by DOE and NSF-REU Program.

Laura Pineda Cyclotron Institute, Texas A&M

Date submitted: 24 Jul 2014

Electronic form version 1.4