HiTc Resistivity Measurements and QCP in CLBLCO Superconductors

YAKOV ECKSTEIN, Technion, Haifa, Israel; Northwestern University, Evanston, IL, BYRON WATKINS, Northwestern University, Evanston, IL, KHANAN CHASHKA, ARKADY KNIZHNIK, Technion, Haifa, Israel — Measurements of resistivity in ceramic (Ca$_x$La$_{1-x}$)(Ba$_{c-x}$La$_{2-c+x}$)Cu$_3$O$_y$ for (1) $c=1.75$ and (2) $c=1.5$ were taken as function of oxygen $y$. By using oxygen doping for the case (1) and $x=0.1$, one can dope this compound from non SC (superconductivity) underdoped to non SC overdoped. In the underdoped region there exists a temperature such that below this $T$, dR/dT is negative before superconductivity sets in. We also find dR/dT becomes negative at low $T$ for the non superconducting samples in the extreme overdoped regime. No quantum critical point (QCP) is observed for doping less than $y=7.334$, which constitutes the entire SC range. The compound with $c=1.5$ and $x=0$ is never superconducting. All these samples exhibit negative slope in their R-T characterizations. The temperature at which dR/dT becomes negative is lower when doping in higher values.