Abstract Submitted for the MAR05 Meeting of The American Physical Society

A One-Dimensional Magnetic System; Terbium Borosilicide TAKAO MORI¹, National Institute for Materials Science — Boron-rich compounds such as REB₆₆ are well known, but the main interest has tended to be of structural or mechanical nature. However, recently interesting magnetic behavior has been discovered in B₁₂ icosahedra-containing dilute semiconducting f-electron compounds [1]. For example, the 3D long range order of GdB₁₈Si₅ and 2D spin glass behavior of a homologous series of higher borides like REB₁₇CN. An interesting aspect of these transitions is the indication that B₁₂ icosahedral clusters mediate the magnetic interaction, possibly through a superexchange mechanism. Results obtained for neutron diffraction and doping effects on a TbB₅₀-type compound TbB₄₄Si₂ are presented. It is indicated that this is a 1D system with extremely short range interaction. [1] e.g. T. Mori and H. Mamiya, Phys. Rev. B, **68**, 214422 (2003), T. Mori, J. Appl. Phys., **95**, 7204 (2004).

¹Also affiliated with PRESTO, Japan Science and Technology Agency

Takao Mori National Institute for Materials Science

Date submitted: 25 Oct 2004 Electronic form version 1.4