Abstract Submitted for the MAR05 Meeting of The American Physical Society

Boron excess and external pressure effects on NbB2¹ RICHARD FALCONI, DACB UJAT, RAUL ESCAMILLA, IIM UNAM, ALEJANDRO DU-RAN, CCMC UNAM, FRANCISCO MORALES, IIM UNAM, ROBERTO ESCUD-ERO, IIM UNAM — We report structural and electronic studies on NbB_{2+x} with nominal compositions $2.0 \le B/Nb \le 2.6$. After refinement the obtained compositions were found that are superconducting for $(B/Nb)_{ref}$ $\geq 2.20(2)$. Structural analyses reveal that the boron excess induces significant changes in the Nb-B bond length, giving rise to an increase in the c axis and in the cell volume. The superconducting transition temperature, T_C , increases with boron content to a maximum at 9.8 K, for the composition $(B/Nb)_{ref} = 2.34(1)$. Electrical resistance measurements as a function of temperature and pressure show that T_C decreases at different rates, depending on boron excess. Samples with high concentration of boron show low dTc/dP rates. These experimental results are discussed in terms of possible Nb vacancies. The changes of T_C are correlated with the evolution of the structural parameters and compared with theoretical predictions of band structure.

¹We thank DGAPA-UNAM for financial support, and F Silvar for technical support.

Roberto Escudero IIM UNAM

Date submitted: 09 Nov 2004 Electronic form version 1.4