Time-Resolved Spectroscopy of Single Excitons Bound to Te Iso-electronic Pairs in ZnSe

ANDREAS MULLER, PABLO BIANUCCI, University of Texas at Austin, CARLO PIERMAROCCHI, Michigan State University, MARCO FORNARI, Central Michigan University, IVAN-CHRISTOPHE ROBIN, REGIS ANDRE, Université J. Fourier, CHIH-KANG SHIH, University of Texas at Austin — Single Te impurity centers in ZnSe were probed with time-resolved photoluminescence spectroscopy. Resolution-limited peaks with an ultra-low spatial density originate in the recombination of excitons deeply bound to single nearest-neighbor isoelectronic Te pairs. This interpretation is confirmed by ab-initio calculations. The peaks reveal anti-bunched photon emission and a doublet structure polarized along [110] and [1\bar{1}0]. We analyze the time-resolved PL decay to clarify the role of the dark states in the spin relaxation and radiative recombination of single fine-structure split excitons.