Growth of the Cooperative Length Scale Below the Caging Temperature of Glass-forming Liquids

BRIAN ERWIN, RALPH COLBY, The Pennsylvania State University, SUDESH KAMATH, The University of Tennessee, SANAT KUMAR, Rensselaer Polytechnic Institute — A cooperative mechanism is invoked to explain the acute property changes observed in glass-forming liquids near the glass transition temperature \(T_g\). This theory implies the existence of cooperatively rearranging regions (CRR) as characterized by a dynamic length scale \(\xi\), which is present in both experiments and simulation. Armed with the temperature dependence of this length scale and the fractal dimension of the CRR (from simulations) a simple scaling model for glassy behavior can be constructed. This scaling model has been applied to measurements of viscosity, the \(\alpha\)-relaxation and probe dynamics to estimate the \(\xi(T)\) for numerous glass forming liquids.