Abstract Submitted for the MAR05 Meeting of The American Physical Society

Extraordinary Hall Effect in (Ni80Fe20)x(SiO2)1-x Thin Films¹ HUI LIU², FUK KAY LEE, RONG KUN ZHENG, X.X. ZHANG, OPHELIA K.C. TSUI, Department of Physics and Institute of Nano Science and Technology, Hong Kong University of Science and Technology — The extraordinary Hall effect (EHE) in ferromagnetic samples is generally attributed to scatterings of iterant electrons in the presence of spin-orbit interactions. In this work, study on the thickness dependence of the EHE in the (Ni₈₀Fe₂₀)_x(SiO₂)_{1-x} system showed the spontaneous Hall resistivity, ρ_{sy}^S , to be a constant while the Hall coefficient, $R_S (\equiv \rho_{sy}^S/M_S$ where M_S is the saturated magnetization) increased monotonically owing to a depression in M_S . We propose the constancy of ρ_{sy}^S with reducing thickness to arise from the sample morphological structure becoming two-dimensional with decreasing film thickness, expected from classical percolation theory. We also find in this system with varying x that $\rho_{sy}^S \propto \rho_{xx}^{\gamma}$, with $\gamma = 0.53$ to 1 in disagreement with the value 2 frequently attributed to the side jump effect, but explainable in terms of the more general form $\rho_{sy}^S = \rho_{xx} \Delta y_e / \Lambda_{SO}$, where Δy_e is the side jump displacement and Λ_{SO} the spin-orbit mean-free-path.

¹We acknowledge Prof. Ping Sheng for many useful discussions as well as encouragements. This work is supported by the Research Grant Council of Hong Kong through the project HKUST6150/01P. ²Currently in Tianjian University

> Ophelia K.C. Tsui Hong Kong University of Science and Technology

Date submitted: 20 Mar 2013

Electronic form version 1.4