Extraordinary Hall Effect in (Ni$_{80}$Fe$_{20}$)$_x$(SiO$_2$)$_{1-x}$ Thin Films

HUI LIU2, FUK KAY LEE, RONG KUN ZHENG, X.X. ZHANG, OPHELIA K.C. TSUI, Department of Physics and Institute of Nano Science and Technology, Hong Kong University of Science and Technology — The extraordinary Hall effect (EHE) in ferromagnetic samples is generally attributed to scatterings of itinerant electrons in the presence of spin-orbit interactions. In this work, study on the thickness dependence of the EHE in the (Ni$_{80}$Fe$_{20}$)$_x$(SiO$_2$)$_{1-x}$ system showed the spontaneous Hall resistivity, ρ_{sy}^S, to be a constant while the Hall coefficient, $R_S(=\rho_{sy}^S/M_S$ where M_S is the saturated magnetization) increased monotonically owing to a depression in M_S. We propose the constancy of ρ_{sy}^S with reducing thickness to arise from the sample morphological structure becoming two-dimensional with decreasing film thickness, expected from classical percolation theory. We also find in this system with varying x that $\rho_{sy}^S \propto \rho_{xx}^2$, with $\gamma = 0.53$ to 1 in disagreement with the value 2 frequently attributed to the side jump effect, but explainable in terms of the more general form $\rho_{sy}^S = \rho_{xx} \Delta y_e / \Lambda_{SO}$, where Δy_e is the side jump displacement and Λ_{SO} the spin-orbit mean-free-path.

\footnote{We acknowledge Prof. Ping Sheng for many useful discussions as well as encouragements. This work is supported by the Research Grant Council of Hong Kong through the project HKUST6150/01P.}

\footnote{Currently in Tianjian University}

We acknowledge Prof. Ping Sheng for many useful discussions as well as encouragements. This work is supported by the Research Grant Council of Hong Kong through the project HKUST6150/01P.

Ophelia K.C. Tsui
Hong Kong University of Science and Technology

Date submitted: 20 Mar 2013

Electronic form version 1.4