MAR05-2004-000253

Abstract for an Invited Paper for the MAR05 Meeting of the American Physical Society

Superconductivity in the Osmium-based Beta-Pyrochlore Oxides

ZENJI HIROI, ISSP, University of Tokyo

Superconductivity is reported in recently discovered β tpyrochlore oxides AOs₂O₆. The T_c is 3.3 K, 6.3 K, and 9.6 K for A = Cs, Rb, and K, respectively. The highest T_c of KOs₂O₆ is almost one order higher than the $T_c = 1.0$ K of previously reported α -pyrochlore oxide superconductor Cd₂Re₂O₇ which is believed to be a conventional *s*-wave superconductor. Moreover, the upper critical field H_{c2} of KOs₂O₆ is estimated to be 38 T, which seems to exceed Pauli's limit expected for conventional superconductivity. This is again in contrast to the case of Cd₂Re₂O₇, in which the H_{c2} is 0.29 T, much smaller than the corresponding Pauli's limit. These distinct contrasts strongly suggest that the mechanism of superconductivity is essentially different between the two pyrochlore oxides. It is to be noted that the T_c of these β tpyrochlore oxides decreases with increasing the ionic radius of the alkaline metal ions, imposing negative chemical pressure upon the Os pyrochlore lattice. I believe that interesting physics is involved on the basis of strong electron correlations on the highly frustrated pyrochlore lattice.