Abstract Submitted for the MAR05 Meeting of The American Physical Society

Electronic structure properties and superconductivity of the β pyrochlore Os oxides, AOs_2O_6 (A=alkali metal)¹ R. SANIZ, A. J. FREE-MAN, Northwestern U. — The recently discovered² family of superconducting β pyrochlores AOs_2O_6 (A=alkali metal) represents a particularly interesting example of the interplay between superconductivity and orbital and crystal structure degrees of freedom. Indeed, the pyrochlore lattice formed by the Os-O staggered chains appears to lead to very high Sommerfeld coefficients, increasing of T_c under positive pressure, and other intriguing properties. We present results of a first-principles study of the electronic structure and superconducting properties of these materials (A=Na, K, Rb, and Cs) using the highly precise full-potential linearized augmented plane wave (FLAPW) method.³ We show that the observed increase of T_c with decreasing mass of A as well as under positive hydrostatic pressure can both be well understood within a conventional phonon-mediated pairing picture. Furthermore, the density of states at E_F depends critically on spin-orbit coupling, due to a van Hove singularity near E_F , with a direct effect on T_c ; the Fermi surface shows strong nesting, which is reflected in the dynamic susceptibility and thus indicates that spin fluctuations may play an important role in these materials.

¹Supported by the DOE (grant No. DE-FG02-88ER 45372).
²T. Muramatsu *et al.* J. Phys. Soc. Jpn. **73**, 10 (2004).
³Wimmer, Krakauer, Weinert, Freeman, Phys. Rev. B **24**, 864 (1981).

R. Saniz Northwestern U.

Date submitted: 18 Nov 2004

Electronic form version 1.4