Surface Freezing in Binary Liquid Gold-Silicon Alloy1 OLEG SHPYRKO, ALEXEI GRIGORIEV, REINHARD STREITEL, PETER PERSHAN, Physics Department and DEAS, Harvard University, Cambridge, MA 02138, BEN OCKO, Brookhaven National Laboratory, Upton, NY 11973, MOSHE DEUTSCH, Bar-Ilan University, Ramat-Gan 52900, Israel — We present experimental x-ray studies of formation of a 2D solid monolayer at the liquid-vapor interface of AuSi eutectic alloy above bulk melting point $T_{\text{melt}} = 363^\circ C$. Additionally, at temperature $T = T_{\text{melt}} + 12^\circ C$ the 2D surface-frozen layer undergoes a solid-solid surface phase transition. Surface-induced atomic layering structure normal to the surface was found to be significantly enhanced for low-temperature 2D phase (layering length ≈ 3 nm), while reverting to classical layering length of ≈ 1 nm above surface transition temperature. The Gold-Silicon eutectic is the first miscible binary metallic system for which such surface freezing behavior has been observed.

1Synchrotron measurements performed at ChemMatCARS, Advanced Photon Source, Argonne National Lab and supported by DOE grants DE-FG02-88-ER45379 and DE-AC02-98CH10886.