Radiative recombination of charged excitons and multiexcitons in CdSe quantum dots

M. CLAUDIA TROPAREVSKY, ALBERTO FRANCESCHETTI, Oak Ridge National Laboratory, Oak Ridge TN 37831 — Radiative recombination of neutral and charged biexcitons has been recently observed in CdSe nanocrystals using time-resolved, femtosecond spectroscopy. Here we report semi-empirical pseudopotential calculations of charged exciton and multiexciton emission spectra of CdSe nanocrystals. We studied the mono-exciton X (one electron, one hole, $1e-1h$), the charged excitons $X^- (2e-1h)$ and $X^+ (1e-2h)$, and the charged biexcitons $XX^- (3e-2h)$ and $XX^+ (2e-3h)$. For a 3.9 nm-diameter CdSe nanocrystal, we found that the emission peak for the X^- recombination overlaps with that of X (at 2.16 eV), while the X^+ emission peak is slightly blue-shifted (by 0.02 eV). We also found that the main peaks in the XX^- and XX^+ emission spectra are significantly blue-shifted with respect to the exciton peak X (by 0.04 and 0.05 eV, respectively) because of inter-particle interactions. In the case of XX^-, we observe an additional peak of lower intensity at 2.50 eV originating from the recombination of a $1p$ electron state with a partially occupied $1p$ hole state. This work was supported by the US DOE Office of Science LAB3-17 initiative.

M. Claudia Troparevsky
Oak Ridge National Laboratory, Oak Ridge TN 37831

Date submitted: 22 Nov 2004 Electronic form version 1.4