Abstract Submitted for the MAR05 Meeting of The American Physical Society

Momentum dependence of the half-flux quantum effect in YBCO-Nb rings JOHN KIRTLEY, CHANG TSUEI, IBM Research, Watson Research Center, A. ARIANDO, HANS HILGENKAMP, University of Twente, the Netherlands — We have studied the half-flux quantum effect¹ in YBa₂Cu₃O_{7- δ}(YBCO)-Nb rings with ramp-type junctions,² in a test for a time reversal symmetry breaking order parameter.³ The angle of one junction normal relative to the YBCO *a*-axis was held fixed, while the other was varied in 5 degree intervals from ring to ring. The epitaxial YBCO thin film rings, with inside and outside diameters of $30\mu m$ and $130\mu m$, were cooled in various fields and imaged at 4.2K with a SQUID microscope. The spontaneously generated flux Φ in the rings, when cooled in zero field, alternated systematically with the second junction angle from nearly zero flux (N = 0)to nearly $\Phi = \Phi_0/2 = h/4e$ (N = 1/2) in a manner consistent with a predominantly $d_{x^2-y^2}$ Cooper pairing symmetry. The transition between the N=0 and N=1/2states occured at angles slightly different from multiples of 45° , consistent with a small a - b plane anisotropy in the gap. Deviations from $\Phi_0/2$ flux were small, indicating little, if any, imaginary component to the order parameter, independent of Cooper pair momentum.

¹C.C. Tsuei *et al.* Phys. Rev. Lett. **73** 593(1994)
²H.J.H. Smilde *et al.* Appl. Phys. Lett. **80**, 4579(2002)
³T.K. Ng and C. Varma, cond-mat/0403379

John Kirtley IBM Research, Watson Research Center

Date submitted: 22 Nov 2004

Electronic form version 1.4