Abstract Submitted for the MAR05 Meeting of The American Physical Society

Experimental studies of symmetric block copolymer blends in thin films. EASAN SIVANIAH, Texas Technical University, SHINYA MATSUB-ARA, YUE ZHAO, TAKEJI HASHIMOTO, Kyoto University, TOM MATES, ED-WARD J. KRAMER, University of California at Santa Barbara — Microdomain size control in thin films of blended symmetric poly(styrene-block-methyl methacrylate) [PS-b-PMMA] was examined. Rough substrates and high temperatures were used to prepare perpendicularly oriented PS-b-PMMA lamellae. A large block copolymer [BCP], (with N_{large} monomer units) and a small BCP (with N_{small} monomer units) were mixed in a range of composition using a set of symmetric PS-b-PMMA BCPs (where χN ranged from 20~100). Thus the blend was characterized by; blend composition, the ratio $\alpha = N_{\text{large}}/N_{\text{small}}$ and χN_{large} . AFM studies of the perpendicular surface structure determined the effect of blend composition on lamella periodicity, D_{mix} . Depth profile analysis and x-ray scattering studies determined the copolymer distribution in the film and the bulk lamellar period, respectively. The effect of composition on D_{mix} was compared to an analytic mean field theory in the strong segregation limit. Whilst good agreement was observed when both χN_{large} and χN_{small} were large (~70-100), there were significant deviations from the theory when $\chi N_{\text{Small}} \sim 20{\text{-}}60$. However in agreement with bulk blend studies, block copolymer macrophase separation was observed at the polymer air surface when the relative size of the block copolymer pairs exceeded $\alpha \sim 5$.

> Easan Sivaniah Texas Technical University

Date submitted: 22 Nov 2004

Electronic form version 1.4