All-electron and pseudo-potential studies of structural and electronic properties of Si chains and nanowires

JUN LI, ARTHUR FREEMAN, Northwestern University, ANDREW WILLIAMSON, JEFFREY GROSSMAN, GIULIA GALLI, Lawrence Livermore National Laboratory — Recent experiments invoke Si nanowires as promising materials for nanoscale electronic and optical devices. We carried out electronic structure calculations of silicon chains and nanowires, by using both the full-potential linearized augmented plane wave (FLAPW) method and the pseudopotential plane wave method. We studied two sets of H-terminated one nanometer silicon wires, one oriented along (001) and the other along (111); both show direct band gaps, with the (111) oriented wires showing a smaller gap (~2.1 eV) than (001) (~2.5 eV). This trend differs from that reported in the literature, but it is the same in both our all-electron and well converged pseudopotential calculations. We also found that structural relaxations induce different effects on the band structure of differently oriented wires; the band gap change is nearly 0.2 eV between the ideal and relaxed models for (001) while it is negligible for (111) wires.

1Supported by DARPA PROM
2Y. Wu, et.al., Nature 430, 61 (2004); and references therein