Abstract Submitted for the MAR05 Meeting of The American Physical Society

Observation of the spontaneous vortex phase in the weakly ferromagnetic superconductor $ErNi_2B_2C$: A penetration depth study EE MIN ELBERT CHIA, TUSON PARK, Los Alamos National Laboratory, MYRON SALA-MON, University of Illinois at Urbana-Champaign, HEON-JUNG KIM, SUNG-IK LEE, Pohang University of Science and Technology — The coexistence of weak ferromagnetism and superconductivity in ErNi₂B₂C suggests the possibility of a spontaneous vortex phase (SVP) in which vortices appear in the absence of an external field. We report evidence for the long-sought SVP from the in-plane magnetic penetration depth $\Delta\lambda(T)$ of high-quality single crystals of ErNi₂B₂C, using a highprecision tunnel-diode based, self-inductive technique at 21 MHz. In addition to a slight depression of superconductivity at the Néel temperature $T_N = 6.0$ K and at the weak ferromagnetic onset at $T_{WFM}=2.3$ K, $\Delta\lambda(T)$ rises to a maximum at $T_m=0.45$ K before dropping sharply down to ~ 0.1 K. We assign the 0.45 K-maximum to the proliferation of spontaneous vortices. A model proposed by Koshelev and Vinokur explains the increasing $\Delta\lambda(T)$ as the vortex density increases, and its subsequent decrease below T_m as defect pinning suppresses vortex hopping.

> Ee Min Elbert Chia Los Alamos National Laboratory

Date submitted: 22 Nov 2004

Electronic form version 1.4