Abstract Submitted for the MAR05 Meeting of The American Physical Society

The electronic structure of PrT2B2C (T=Co,Ni and Pt): A Tight Binding - Extended Huckel D.H. GALVAN, C. SAMANIEGO, A. POSADA-AMARILLAS, A. DURAN, CCMC-UNAM, Mexico, F. MORALES, R. ESCUDERO, IIM-UNAM, Mexico — The calculations reported in this work were carried out by means of the tight-binding method within the Extended Huckel framework using YAEHMOP computer package with f-orbitals. The calculated energy bands indicate that the three compounds under investigation show metallic behavior mainly caused by the d-states of the T-atoms. For PrNi₂B₂C and PrCo₂B₂C compounds the Fermi level $(\mathbf{E_F})$ is located in a valley in the total density of states (DOS), while for $PrPt_3B_2C$ the E_F is located in a crest. Our results predict the absence of superconductivity in $PrNi_2B_2C$ and $PrCo_2B_2C$ compounds, while the enhancement of **DOS** at the **E**_F in **PrPt₂B₂C** compound indicates the possibility of superconductivity. Moreover, the PrNi₂B₂C and PrCo₂B₂C compounds indicate strong and similar type of hybridization while different and reduced hybridization in $PrPt_2B_2C$ compound is observed. Transport properties performed by our group confirms the existence of superconductivity in PrPt₂B₂C while the high value of Sommerfeld constant ($\gamma \approx 200\text{-}300 \text{ mJ/mol} - \text{K}^2$) in $PrNi_2B_2C$ and $PrCo_2B_2C$ compounds might be connected by an enhancement of the hybridization observed here.

> Cuauhtemoc Samaniego CCMC-UNAM

Date submitted: 29 Nov 2004 Electronic form version 1.4