Abstract Submitted for the MAR05 Meeting of The American Physical Society

The Structure, Stability and Origin of beta-Phase Ta AIQIN JIANG¹, TREVOR TYSON², LISA AXE³, New Jersey Institute of Technology — Tantalum thin films exhibit two crystalline phases, bcc (α -phase, the bulk structure of tantalum) and metastable tetragonal β -phase, which differ in both mechanical and electrical properties. In order to understand the stability of the β phase and the origin of the β -to- α phase transformation, molecular dynamics simulations have been performed on tantalum clusters. Molecular dynamics simulations show that the β phase is stable with a very high melting point. No phase transformation was observed for pure β -Ta clusters from room temperature to the melting point. Simulations of Ta clusters with mixed α and β phases revealed that inclusion of a small α -Ta cluster inside a β -Ta cluster induces β to bcc transformation at a temperature far below its melting point, depending on the cluster size and α to β atom ratio. These results suggest that the observed β to bcc transformation results from the presence of small α -phase grains within the β -Ta films. The growth of β -Ta on substrate as a result of strain is being evaluated.

Aiqin Jiang New Jersey Institute of Technology

Date submitted: 23 Nov 2004 Electronic form version 1.4

¹Department of Physics

²Department of Physics

³Department of Civil and Environmental Engineering