Structure of nanocrystals embedded in amorphous carbon

IOANNIS REMEDIAKIS, MARIA FYTA, PANTELIS KELIRES, Physics Department, University of Crete, Heraklion, Crete, Greece, GEORGIOS KOPIDAKIS, Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece — Amorphous carbon (a-C) has been often found to contain crystalline regions with diameters in the nanometer scale. The so-called nanostructured amorphous carbon has attracted considerable attention, because of possible applications in MEMS/NEMS and optoelectronic devices. In this work, we study embedded nanocrystals in various a-C matrices using tight-binding molecular dynamics and empirical-potential Monte Carlo simulations. We are especially interested in faceted nanocrystallites, that deviate significantly from a spherical shape. We start by calculating the interface energy between various faces of the crystal and a-C. We then use the so obtained interface energies to predict the shape of the nanocrystal by means of a Wulff construction. Finally, we construct the atomistic configuration of the embedded nanocrystallite and examine its stability as a function of temperature and the nanocrystallite size.