Abstract Submitted for the MAR05 Meeting of The American Physical Society

Origin of Superconductivity in Boron-doped Diamond KWAN-WOO LEE, WARREN E. PICKETT, University of California, Davis — Superconductivity of heavily boron-doped diamond having B concentration of 5×10^{21} cm⁻³, reported at $T_c=4$ K by Ekimov *et al.*(April, 2004), is investigated exploiting its electronic and vibrational analogies to MgB₂. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger than the corresponding quantity in MgB₂ that drives its high T_c , leading to very large electron-phonon matrix elements. The calculated coupling strength $\lambda \approx 0.5$ leads to T_c in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T_c somewhat, but effects of three dimensionality primarily on the density of states keep doped diamond from having a T_c closer to that of MgB₂.

> Kwan-Woo Lee University of California, Davis

Date submitted: 27 Nov 2004

Electronic form version 1.4