Momentum and thickness-dependent evolution of quantum well states in the Cu/Co/Cu(001) system1 M.A. VAN HOVE, LBNL, Berkeley, and UC-Davis, J.M. AN, A. CANNING, L.-W. WANG, E. ROTENBERG, LBNL, Berkeley, Y.Z. WU, Z.Q. QIU, LBNL, Berkeley, and UC-Berkeley — Experimental advances in sample fabrication allow the observation of individual quantum well (QW) states from discrete atomic layer thicknesses. We present comprehensive angle-resolved photoemission measurements of the Fermi surface and underlying band structure of QW states in Cu/Co/Cu(001). Compared to bands from normal emission, we find a complicated evolution of QW states as a function of the thickness of both the copper overlayer and the cobalt barrier layer, as well as of the emission angle. This reveals a very high sensitivity of “off-normal” QW states to film thickness. Self-consistent calculations reveal a significant interaction between the QW states in the Cu overlayer and the Co barrier states, which leads to the observed complex behavior in particular ranges of energy and emission angle.

1Supported by DOE and NSF