MAR05-2004-000965

Abstract for an Invited Paper for the MAR05 Meeting of the American Physical Society

Magnetic Properties of Quantum Corrals

BENCE LAZAROVITS, Center for Computational Materials Science, Technical University Vienna, Vienna, Austria

One of the iconal experiments in nanotechnology has been the fabrication of a circular arrangement of 48 Fe atoms on a Cu(111) surface and the direct observation, by Scanning Tunneling Microscopy, of charge oscillations within the circle. Now, the remarkable developments in spin-polarized STM make the observing of spatial variations in the magnetic density a distinct possibility and therefore an attractive new area of research. We present 'first principles' calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method. We show the 'Friedel like' oscillations of charge and magnetization densities and the possibility of the appearance of spin-polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers the problem is analyzed in terms of a simple quantum mechanical circular well model. This model is also used to an estimate the behavior of the magnetization and energy with respect to the radius of the circular corral.