Structural and Electronic Properties of Mo$_6$S$_x$I$_{9-x}$ Nanowires.1

TENG YANG, Michigan State University, JIPING LI, Michigan State University, SAVAS BERBER, University of Tsukuba, DAVID TOMANEK, Michigan State University — We investigate the equilibrium geometry and electronic structure of recently synthesized Mo$_6$S$_x$I$_{9-x}$ nanowires using 	extit{ab initio} Density Functional calculations. Our structure optimization calculations suggest a well-defined atomic structure within these nanowires, which are energetically unusually stable in view of their sub-nanometer diameter. For particular stoichiometries, we find the Mo$_6$S$_x$I$_{9-x}$ nanowires to be rather soft with respect to axial compression, and also to be metallic. We characterize the quantum conductance in these nanowires using a self-consistent nonequilibrium Green’s function approach within the Landauer-Buttiker formalism. We find the charge density near the Fermi level to be delocalized along the wires, suggesting a high polarizability. For particular metastable geometries, the nanowires also exhibit a magnetic instability. Combination of atomic-scale perfection with a high structural stability and unusual electronic and transport properties lends itself to potential applications of these nanowires as unique building blocks in hierarchically assembled electronic nanocircuits.

1Supported by NSF NIRT Grant Number DMR-0103587 and NSF NSEC Grant Number 425826.

Teng Yang
Michigan State University

Date submitted: 26 Nov 2004

Electronic form version 1.4