A Physical Interpretation of an Orthogonal Hilbert-Space Transformation: Transmission Antiresonances from Long-Range Hopping

SETH RITTENHOUSE, Dept. of Physics/Astronomy, Western Washington University, BRAD JOHNSON, Dept. of Physics/Astronomy, Western Washington University — We provide the physical interpretation for a recently-introduced Hilbert space transformation from a nonorthogonal (overlapping) basis to an orthogonal basis, for the purpose of studying transport through single-molecule systems. The new Hilbert space may be interpreted as an orthogonal basis in the same physical space, wherein the basis overlap is formally transferred to the hopping matrix elements in the orthogonal system, resulting in a standard tight-binding system in an orthogonal basis with long-range hopping. We utilize the formal procedure to solve for the transmission characteristics of an impurity site (molecule) coupled with semi-infinite leads. We demonstrate that (previously predicted) transmission antiresonances are produced, in the orthogonal space, by the presence of second-nearest neighbor hopping. The parameter range in which transmission antiresonances are possible is formally outlined—a feature of the orthogonal space transformation.

Brad Johnson
Western Washington University

Date submitted: 26 Nov 2004

Electronic form version 1.4