Abstract Submitted for the MAR05 Meeting of The American Physical Society

Singlet-triplet splitting and electron localization in elliptic quantum dots¹ CONSTANTINE YANNOULEAS, UZI LANDMAN, School of Physics, Georgia Institute of Technology — Experimental control of the singlet-triplet splitting in a two- electron (2e) quantum dot molecule (QDM) as a function of the magnetic field is an important step in the implementation of quantum logic gates.² Using symmetry breaking at the unrestricted Hartree-Fock level and subsequent symmetry restoration via projection techniques, we show that the two electrons localize and form a molecule (in the sense of Heitler- London) even when the interdot barrier vanishes.³ This 2e molecule is characterized by a singlet-triplet curve similar to that of a QDM with a *finite* interdot barrier.³ Most importantly, we find that a 2e molecule exhibiting a similar singlet-triplet curve is also formed in the case of a single, but elliptic QD; this is in agreement with experimental observations.²

¹Supported by the U.S. D.O.E. (FG05-86ER-45234)
²D.M. Zumbühl *et al.*, cond-mat/0408276
³C. Yannouleas and U. Landman, Int. J. Quantum Chem. **90**, 699 (2002)

Constantine Yannouleas School of Physics, Georgia Institute of Technology

Date submitted: 27 Nov 2004

Electronic form version 1.4